Skip to main content
Stochastic Numerics Research Group
STOCHNUM
Stochastic Numerics Research Group
Main navigation
Home
People
Principal Investigators
Research Scientists and Engineers
Postdoctoral Fellows
Students
All Profiles
Administrative Staff
Alumni
Former Members
Events
All Events
Events Calendar
News
Pages
Publications
ISL Publications Repository
Research Output
supervised learning
Article published in IMA Journal of Numerical Analysis
1 min read ·
Mon, Oct 24 2022
News
residual network
deep random feature networks
supervised learning
layer- by-layer algorithm
In September 2022, the IMA Journal of Numerical Analysis published the article Smaller generalization error derived for a deep residual neural network compared with shallow networks, by Aku Kammonen (KAUST), Jonas Kiessling (KTH Royal Institute of Technology), Petr Plecháč (University of Delaware), Mattias Sandberg (KTH Royal Institute of Technology), Anders Szepessy (KTH Royal Institute of Technology), and Raul Tempone (KAUST). Abstract: Estimates of the generalization error are proved for a residual neural network with L random Fourier features layers. An optimal distribution for the