Biography
Professor Tempone received his Ph.D. in Numerical Analysis ('02) from the Royal Institute of Technology, Sweden. The next phase of his career took him to the United States, where he completed his postdoctoral studies at the University of Texas' Institute for Computational and Engineering Sciences (ICES), before joining Florida State University as an Assistant Professor of Mathematics.
Tempone joined KAUST in 2009 as a founding faculty, with the rank of Associate Professor of Applied Mathematics before becoming a Full Professor of Applied Mathematics in 2015. He is also the principal investigator of the Stochastics Numerics Research Group at KAUST.
A variety of fields, such as computational mechanics, quantitative finance, biological and chemical modelling and wireless communications, are driving his research. More specifically, his research contributions include a posteriori error approximation and related adaptive algorithms for numerical solutions to deterministic and stochastic differential equations. His honors include the German Alexander von Humboldt professorship (2018-2025) and the first Dahlquist Fellowship in Sweden (2007-2008). He was elected Program Director of the SIAM Uncertainty Quantification Activity Group (2013-2014).
Research Interests
Professor Raul Tempone's expertise and research interests lie at the intersection of applied mathematics, computational science, and stochastic analysis, with a strong focus on developing and analyzing numerical methods for stochastic and deterministic problems. His work emphasizes adaptive algorithms, Bayesian inverse problems, scientific machine learning, stochastic optimization, and uncertainty quantification, aiming to push the boundaries of computational efficiency and accuracy in simulations.
At the helm of the Stochastic Numerics Research Group at KAUST, Tempone is particularly interested in applications spanning computational mechanics, quantitative finance, biological and chemical modeling, and wireless communications. His research group is dedicated to tackling a posteriori error approximation, data assimilation, hierarchical and sparse approximation, optimal control, optimal experimental design, and the rigorous analysis of numerical methods.
Professor Tempone's approach is not only theoretical but also highly applicable, seeking to address real-world problems in various domains by leveraging mathematical and computational techniques. His work is instrumental for those interested in the practical application of mathematics to solve complex, real-world issues, making his research group an ideal place for potential collaborators, postgraduate students, postdocs, and research scientists looking for cutting-edge projects at the nexus of uncertainty quantification and computational science.